

Waves of cancer and how to tackle them

Eszter Lakatos

Assistant Professor

Computing Disease Evolution (CODE) group

Time

Time

.

Time

What can we (mathematicians) do?

- We know the basic rules of what is happening
- > But we cannot look inside the cancer
- And we should not try different treatments on actual patients
- We can use theory from ecology and evolutionary biology
- We can build a mathematical model!

Let's build a model!

- We have sensitive and resistant cells.
- Cells continuously give birth to new cells
- Sensitive and resistant cells compete for resources
 - Limited number of cells can live
 - If too many cells are growing, cells start dying
 - Sensitive cells are stronger
- Under therapy, cells die
 - Sensitive cells die much faster
- We measure the total number of cells (imperfectly)

Let's build a model!

- We have sensitive and resistant cells
- Cells continuously give birth to new cells
- Sensitive and resistant cells compete for resources
 - Limited number of cells can live
 - If too many cells are growing, cells start dying
 - Sensitive cells are stronger
- Under therapy, cells die
 - Sensitive cells die much faster
- We measure the total number of cells (imperfectly)

$$\frac{dS}{dt} = b \cdot S - b \cdot S \cdot \frac{S + R}{K} - d_S \cdot S$$

$$\frac{dR}{dt} = b \cdot R - b \cdot R \cdot \frac{\mathbf{c} \cdot S + R}{K} - \mathbf{d_R} \cdot R$$

$$C = S + R + \varepsilon, \qquad \varepsilon \sim \mathcal{N}(0, \sigma)$$

Cancer burden observation

How similar is this to real life?

Patients with ovarian cancer:

How similar is this to real life?

Patients with ovarian cancer:

How similar is this to real life?

Patients with ovarian cancer:

total treatment: 125

total treatment: 115

total treatment: 115

Evolutionary/adaptive therapy

total treatment: 105

Gatenby et al., Cancer Research, 2009:

Hockings et al., bioRxiv, 2023:

ACTOv: A trial of adaptive chemotherapy in relapsed platinum-sensitive ovarian cancer

Trial at a glance

Open trial

Cancer type: Epithelial - high-grade serous and endometrioid

Treatment stage: Recurrence

Acronym: ACTOV

ACTOv: A trial of adaptive chemotherapy in relapsed platinum-sensitive ovarian cancer

Adaptive Abiraterone Therapy for Metastatic Castration Resistant Prostate Cancer

ClinicalTrials.gov ID 1 NCT02415621

Sponsor 1 H. Lee Moffitt Cancer Center and Research Institute

Information provided by 1 H. Lee Moffitt Cancer Center and Research Institute (Responsible Party)

Last Update Posted 1 2024-02-21

Prostate — Recruiting

ANZadapt

Zhang et al., eLife, 2022:

Summary

- > >80% of cancer death today are due to therapy failure
- Cancers evolve/change and become resistant
- We can model this process mathematically
- Models help design treatments that keeps cancer under control
- The real picture inside a cancer is likely much more complicated

Generated with DALL-E 3.5